Pixel to Plate :

Deep Learning Based - Recipe Discovery and

Recommendation

Sai Tejasri Yerramsetti, Anurima Saha, Radhika Ravindra, Sayandip Pal, Pritkumar Chakalasiya

Project under
Prof. Ryan Rafler
BDA 602 - MACHINE LEARNING

Abstract

This paper presents an innovative approach that integrates machine learning, deep learning, and optical
character recognition (OCR) techniques to automate the identification of grocery items and provide
intelligent recipe recommendations. The main objective is to develop an automated system capable of
accurately recognizing a wide range of fruits, vegetables, and packaged goods using advanced computer
vision models and OCR methods. Our methodology involves the use of transfer learning to fine-tune
pre-trained vision models on the Fruits and Vegetables dataset from Kaggle, alongside the integration of
state-of-the-art OCR solutions to extract text from multilingual packaged grocery items, enabling
comprehensive ingredient recognition. Additionally, natural language processing techniques have been
incorporated to offer personalized recipe recommendations based on the identified ingredients, utilizing
methods such as word embeddings, word vectorization, and similarity measures. Our holistic approach has
yielded highly accurate results, with the fine-tuned vision models achieving an impressive 96.38% accuracy
on the test set. This research aims to revolutionize the grocery shopping experience by providing seamless
item identification and intelligent recipe recommendations, thereby enhancing culinary exploration and
convenience for consumers.

Keywords: Deep Learning, Transfer Learning, Optical Character Recognition (OCR), Recipe
Recommendation, Grocery Item Identification, Vision Transformers, Convolutional Neural Networks
(CNNs), Natural Language Processing (NLP), Word Embeddings, Vectorization, Multilingual Text
Recognition.

Introduction

In an era characterized by rapid technological advancement, our research focuses on revolutionizing the
culinary industry through the integration of cutting-edge technologies such as deep learning and natural
language processing. Our research aims to harness the power of deep learning and natural language
processing to enhance the grocery shopping experience and culinary recipe exploration. By integrating these
advanced technologies, we seek to improve grocery item identification and provide personalized recipe
recommendations tailored to individual preferences.

Our approach revolves around leveraging sophisticated deep learning algorithms and optical character
recognition (OCR) techniques to navigate the complexities of the grocery marketplace. We explore image
classification methods to accurately identify a wide range of fruits, vegetables, and packaged goods. Using
convolutional neural network (CNN) architectures and transfer learning, we aim to enhance model
performance and ensure accurate classification.

Moving to text recognition, we tackle challenges in extracting multilingual text from packaged grocery
items. Our investigation into OCR methodologies emphasizes the importance of thorough data preprocessing
and translation efforts for seamless integration of ingredient information into our recommendation system. In
recipe recommendation, we combine natural language processing (NLP) and machine learning techniques.
Through methods like TF-IDF vectorization and cosine similarity metrics, we analyze recipe composition to
offer personalized suggestions based on user-specified ingredients. Our recommendation system showcases
the potential of machine learning to revolutionize culinary exploration.

By combining these technologies, we aim to:

Enhance Grocery Item Identification: We utilize sophisticated deep learning algorithms, OCR techniques,
and image classification methods to accurately identify a wide range of grocery items, including fruits,
vegetables, and packaged goods. By doing this, we strive to achieve precise and reliable identification of
diverse products for the user.

Personalized Recipe Recommendations: Our approach extends to providing personalized recipe
recommendations tailored to individual preferences. Leveraging TF-IDF vectorization and cosine similarity
metrics, we analyze recipe compositions and generate personalized recommendations for users. This
personalized recommendation system aims to revolutionize culinary exploration by providing tailored
guidance, increasing engagement and enriching the experience to users.

Exploratory Data Analysis
For this project we have focused on the following three datasets:
2.1 The Freiburg Groceries Dataset

Source - Kaggle

Link - https://github.com/PhilJd/freiburg_groceries_dataset

Description - This dataset consists of 5000 256x256 RGB images of 25 food classes like nuts, oil,
pasta, etc. It has imbalanced class sizes ranging from 97 to 370 images per class. All the images were
taken in various aspect ratios and padded to squares.

2.2 Recipe Dataset
Source - Kaggle

Link - https://github.com/Glorf/recipenlg/tree/c8e3681133b05af48bb5a2a9¢19d1a0cf7636eld

Description - The dataset we publish contains 2231142 cooking recipes (>2 million). It's processed
more carefully and provides more samples than any other dataset in the area. It results in approx 1.6M
recipes of better quality. Some of the features are: 'title', 'ingredients', 'directions', 'link', 'source' and
‘NER’.

2.3 Fruits and Vegetables Dataset

Source - Kaggle

Description - This dataset contains images scraped from Bing Image Search organized into three
primary folders: train (approximately 100 images per category), test (10 images per category) and
validation (10 images per category). Each dataset folder contains subfolders dedicated to thirty six
different classes of fruits and vegetables. The first image from each categorical folder in the train set is
displayed below.

https://github.com/PhilJd/freiburg_groceries_dataset
https://github.com/Glorf/recipenlg/tree/c8e3681133b05af48bb5a2a9c19d1a0cf7636e1d
https://www.kaggle.com/datasets/kritikseth/fruit-and-vegetable-image-recognition

cabbage

apple banana beetroot bell pepper capsicum

carrot

onion orange paprika
i ' .
pomegranate raddish

sweetcorn

e

J

Fig 1: Plotting the first image along with label under each class of of ‘Fruits and Vegetables Dataset’

The following histogram shows the distribution of samples in different classes of the training set.

Number of samples per label

100 97 o 92 97 97
90 92 94 92 94

90 88 89 87 87 88 88 86 =

82 52 52 83

98

80
70
60
50

Counts

40
30
20
10

- = T S c [o] c a
L @ g ¢ % E & 5 v £ v = 2 ¢ g & T 5 ¥ g5 &L L8 2L E L L5 E LS 2 25
2 5 ¢ 2 8§ 3 £ 228 2 % 225z g 3 22 2 % g 3§ 8"z L s 8 55" E 2D

g c 5 2 5 ¢ 8 5 2 Y E 5 B £ @ a #§ 8 § ®8 5 = & 2 c 5§ F ¢ c 8 5§ E 3
g v ¥ g @ LU £ 2 S o o 5 @ L g E 5 © 3 & a S 3 @w g g *® E
& o 2 § o £ o 2 2 B 3 &£ s g g 5 e s & o B B =
a2 = o ® S = 5 8 £ g 1) =z o L
T gz 3 a ¢ 2 i ¢ o
(] S H =

a
Labels

Fig 2: Histogram showing class label and distribution of samples across each class in the training set

We see that the frequency distribution ranges from a minimum of 68 (in case of apple and garlic) to a
maximum of 100 (in case of grapes and peas).

Methodology

3.1 Text Recognition and extraction using Paddle OCR

In our methodology, in the grocery dataset, we utilized OCR methods through Keras and Paddle to detect
and recognize text from labeled ingredients within the dataset. Keras facilitated direct annotations on
images, while Paddle presented information in a convenient list format for streamlined processing. A
significant challenge we encountered was the dataset being in German, requiring translation to English for
compatibility with our tools. Additionally, we converted HEIC images from iPhones to jpg/png using the
HEIC2PNG library to ensure compatibility with Paddle OCR, enabling accurate recognition and labeling of
ingredients. To ensure logical recommendations, we extracted keywords specific to ingredients by
comparing translated English text with the dataset's ingredient column using Python's set method. This
enabled the identification of common elements, further processed after converting all extracted text to
lowercase for easier mapping. We implement a sliding window approach on a separate dataset containing
fruits and vegetables, albeit encountering memory issues.

Head

conv

conv, upx2

° Element-wise Sum

upxN | Up-sample with ratio N

l conv] 3'3convolut|on

conv, upx4

conv, up=8

probability map

pred ﬁ approximate
binary map
I~ P,

threshold map

IIZ 1/4 1/8 /16 1/32

Backbone

Fig 3: Paddle OCR Architecture

3.2 Image Classification using Vision Transformer

Vision Transformer (ViT) is a transformer model that is based on an encoder-only architecture. Although
transformers are traditionally used for Natural Language Processing tasks, ViT has emerged as a strong
alternative for state-of-the-art CNN-based models with its enhanced computational efficiency and accuracy.
This algorithm applies a transformer-like architecture on patches of fixed-size images along with linear and
positional embeddings to produce highly competitive benchmarks for computer vision applications.

Transformer Encoder

A
L x o

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

e @ 1) D8 5)

*# Extra learnable
[Linear Projection of Flattened Patches

[class] embedding
|I||I|,J
A s P

Multi-Head
Attention

SEE |
HEm o O

Embedded
Patches

Fig 4: Vision Transformer Architecture

As seen in the figure above, 2D images of resolution HxWxC are reshaped into N number of flatten 2D

patches of resolution PxP such that N = HW/PZ. This is followed by learnable linear projection that
outputs patch embedding. To retain positional information, position embeddings are added to patch
embeddings. This creates a sequence of token embeddings that are effective inputs to a standard transformer
encoder. The encoder block is made up of alternate layers of multihead self-attention block and MLP block
with layer norm applied before and residual connections applied after every block.

3.3 Image Classification using Convolutional Neural Network Models

Convolutional Neural Networks (CNNs) are a class of deep neural networks primarily used for processing
and analyzing visual data, such as images and videos. They have become the backbone of various computer
vision tasks due to their ability to automatically learn hierarchical patterns and features directly from raw
pixel data. They are inspired by the visual cortex of the human brain, where neurons respond to overlapping
regions of the visual field. Just like the human brain, CNNs apply convolutional operations to extract local
features from input images, which are then aggregated and processed hierarchically to recognize similar or
more complex patterns.

33.1 VGG 16

VGGI16 comprises a series of convolutional layers followed by max-pooling layers, gradually
reducing spatial dimensions while increasing the depth of feature maps. The VGG16 architecture
consists of 16 weight layers, including 13 convolutional layers and 3 fully connected layers. The input
images, typically of size HxWxC, are passed through convolutional layers with small receptive fields
(3x3) and a stride of 1, followed by rectified linear unit (ReLU) activation functions. Max-pooling
layers with a 2x2 window and a stride of 2 are applied to downsample feature maps, preserving the
most important information.

224 %224 %3 224 x 224 =64

112x[112 x 128
x 56 x 256
28 x 28 x 512 {xhxs12

A
Tl

ﬁ] convolution4+RelLU

) max pooling

fully connected+Rel.UJ

.' softmax

Fig 5: VGG16 Architecture

3.3.2 DenseNet
Transition

-

Dense Block Dense Block

(uo1IN|OAUOD |
]
T T T

Fig 6: DenseNet121 Architecture

DenseNetl121 is a deep CNN architecture known for its dense connectivity pattern. Unlike
traditional CNN architectures where each layer is connected only to the subsequent layer, it
establishes direct connections from each layer to every other layer in a feed-forward fashion. The
input images of size HxWxC are processed through multiple dense blocks, each containing several
convolutional layers. Within each dense block, feature maps from all preceding layers are
concatenated along the channel dimension, allowing for direct information flow throughout the
network.

= L 1 x 1 x 4096 1><1I>-<|1;mn

@ Convolutional Laver (] Mean Pooling Layer
() Max Pooling Laver [Fully Connected Layer
:} Concal] Dropout Layer () Softmax Layer

Fig 7: InceptionV3 Architecture

3.3.3 - Inception V3

InceptionV3 is a convolutional neural network architecture renowned for its Inception modules.
Unlike traditional convolutional layers, which rely on fixed-size filters. Inception modules employ
filters of multiple sizes (1x1, 3x3, and 5x5) in parallel, enabling the network to capture features at
various spatial scales. The input images, typically of size HxWxC, are first processed through
convolutional layers and pooling operations to extract hierarchical features. Inception modules are
then strategically placed throughout the network, facilitating efficient feature extraction and
dimensionality reduction.

Analysis

4.1 Fine tuning Vision Transformers for image classification

According to the paper ‘An Image Is Worth 16x16 Words’ , ViT has been pre-trained on large datasets and is
transferable on mid-sized to small image recognition benchmarks like ImageNet, CIFAR-100, VTAB, etc for
downstream classification tasks. For the purpose of our analysis, we have followed a similar methodology
using transfer learning to fine-tune the pre-trained Vision Transformer model to classify image inputs into 36
different classes of fruits and vegetables.

We begin by removing the pre-trained prediction head and initializing a Dx36 feedforward layer with zero
weights.

pretrained vit.heads = nn.Linear(in features=768, out features=len(os.listdir(train dir))).to(device)

Fig 8: Initializing training head for ViT base model

We have used the ViT base model with 86M parameters as summarized below.

Layer (type (var_name Input Shape

visionTransformer (VisionTransformer) 12 , 224, 224]
Conv2d (conv_proj) 1: 3, 224, 224]
Encoder (encoder) 1: 197,

L propout (dropout) 1: 197,

L sequential (layers) 1: 197,
L_EncoderBlock (encoder layer @) 1. 197,
L_EncoderBlock (encoder layer 1) 1. 197,
L_EncoderBlock (encoder layer 2) 1: 197,
L_encoderBlock (encoder layer 3) 1: 197,
L_encoderBlock (encoder layer 4) 128, 197,
L_gEncoderBlock (encoder layer 5) 1. 197,
L_EncoderBlock (encoder layer 6) 1. 197,
L_EncoderBlock (encoder layer 7) 1: 197,

L_encoderBlock (encoder layer 8) 128, 197,
L_encoderBlock (encoder layer 9) 1: 197,
L_EncoderBlock (encoder layer 1) 1. 197,
LEncoderBlock (encoder layer 11) 1. 197,
LayerNorm (1n) 128, 197,
Linear (heads) 12 768]

Total params: 85,826,340
Trainable params: 27,684
Non-trainable params: 85,7
Total mult-adds (G): 22.8e8

Input size (MB): 77.87
Forward/backward pass size (MB): 1
Params size (MB): 229.3@

Fig 9 : ViTBase model instance as used for training image classification model for “Fruits and Vegetables Dataset”
4.1.1 Data Augmentation
The following data augmentation techniques were used to train the model:

1. torchvision.transforms.RandomHorizontalFlip(p=0.5) - Horizontally flip the given
image randomly with a given probability

2. torchvision.transforms.RandomVerticalFlip(p=0.5) - Vertically flip the given image
randomly with a given probability.

3. torchvision.transforms.RandomRotation(degrees,
interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0) -Rotate the
image by angle of 40 degrees

4. torchvision.transforms.Resize(size, interpolation=InterpolationMode.BILINEAR,
max_size=None, antialias=True) - Resize the input image to the (224,224) with bilinear
interpolation

5. torchvision.transforms.Normalize(mean, std, inplace=False) - Normalize a tensor image
with mean and standard deviation of 0.5

Figure 10 : Image transformation after applying data augmentation as mentioned in above - Original image (left) vs
transformed image (right)

4.1.2 Model Training

Model was trained for 30 epochs with batch size of 128 and the following parameters:

1. Optimizer - torch.optim.Adam with a learning rate of 1¢°
2. Loss function - torch.nn.CrossEntropyLoss()

The train and test loss for the final epoch was approximately 0.1901. We obtained accuracy of
94.59% on the train set and 95.06% accuracy on the test in the final epoch. The training loss and
accuracy changes over the 30 epochs has been shown in the plots below:

Loss Accuracy
2.5
—— train_loss —— train_accuracy
—— test_loss —— test_accuracy
0.9
2.0
0.8
1.5 A
0.7 A
1.0 1
0.6
0.5 4
0.5 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Fig 11 : Summarizing Training ViT base model on ‘Fruits and Vegetables Dataset’

4.2 Fine tuning CNNs for image classification

According to established practices, VGG16, DenseNetl121, and InceptionV3 have been pre-trained on
large-scale datasets such as ImageNet. In alignment with this methodology, we have employed transfer
learning by initializing the pre-trained models without their final classification layers. Specifically, we
remove the pre-trained prediction heads and replace them with custom feedforward layers tailored to our
classification task. This approach leverages the weights and biases in the pre-trained models' feature
representations while allowing for fine-tuning on our specific classification problem. After initializing the
pre-trained models without their final classification layers, we augment them with custom feedforward
layers tailored to our specific classification task. In our implementation, we utilize a Flatten layer followed
by a Dense layer(s). This is then connected to an output layer consisting of 36 units, aligns with our
classification problem where we aim to categorize input images into 36 distinct classes of fruits and
vegetables.

4.2.1 Data Augmentation

Due to the unavailability of enough images for each class, image augmentation techniques were used
to increase the dataset size significantly.

train_datagen = ImageDataGenerator(

L Ima
ascale= 1./255
rescale f £33,

vertical flip=True,

horizontal flip=True,
Zoom_range = 8.3,

shear_range = 8.3)

Fig 12 : Image Augmentation technique
4.2.2 Model Training
The models were trained using the following callback functions:-

L. EarlyStopping() - The model is monitored whether the validation accuracy is increasing
with the number of epochs.
2. ModelCheckPoint() - Saves best model weights and prevents underfitting or overfitting.

By using these techniques, an infinite number of epochs can be set, and the training will automatically
stop when best weights are recorded.

es = EarlyStopping(monitor= CL patience=18, restore_best weights=True)

checkpoint = ModelCheckpoint{filepath=filepath, monitor="val acc ', save_best only=True, mode="m:

Fig 13 : Callback functions

', verbose=1)

Number of epochs required for each model:-

1. VGG16 - Early Stopping function halted the training after 55 epochs.
2. DenseNet121 - Early Stopping function halted the training after 333 epochs.
3. InceptionV3 - Early Stopping function halted the training after 361 epochs.

4.3 Ensemble Learning

We have used ensemble learning to combine the predictions from three CNN based models mentioned
above to enhance overall performance. In our approach, we have employed a technique known as
ensemble averaging, where predictions from three pre-trained models - VGG16, DenseNetl121, and
InceptionV3 - are combined to form a consolidated prediction.

Each individual model independently processes the input image and generates its own set of predictions,
represented as probabilities for each class. These predictions are then aggregated using ensemble
averaging, where we extract the maximum probability for each class across all models.

5. Analysis

5.1 Vision Transformer Image Classification Results

We have used our final model to obtain classification results on the validation (with 360 images - 10
images per class). The validation loss from the final model is 0.2088. The model predicts different classes
of fruits and vegetables with an accuracy of 93.45%.

Validation Loss: ©.2088, Validation Accuracy: ©.9345

Fig 14 : Results on the validation set

We have provided the following images (sourced from the internet and not a part of training or validation
set) as an input to the model to obtain more interpretable results. The following images show the predicted
class alongside the probability of obtaining the predicted classes.

Predt garlc | Prob: 0.999
gk Pred: sweetpotato | Prob: 0.886 Pred: beetroot | Prob: 0.910 Pred: bell pepper | Prob: 0.860
~

Pred: pineapple | Prob: 0.999

Fig 15 : Images of fruits and vegetables labeled with the prediction and prediction probabilities

We have also made a visual comparison of different kinds of images for fruits and vegetables belonging
to the same class to understand the scope of our model over a given range. The results for classes potato
and carrot have been highlighted in the figure below.

Pred: potato | Prob: 0.592

Pred: potato | Prob: 0.902

Pred: potato | Prob: 0.969

| '™

Pred: carrot | Prob: 0.713

Fig 16 : Testing model for different types of images of the same class to test the visual range of the predictive power of the model -
testing class potatoes and carrots

5.2 Ensemble Model Image Classification Results
The following accuracy results after evaluating the individual models on the validation set.

5.2.1 VGG 16 - The VGG 16 model provides an accuracy of 92.20% on the validation set after
training it for 55 epochs.

Fig 17 : Validation accuracy of VGG16

5.2.2 DenseNet121 - DenseNet121 model gives an accuracy of 90.53% on the validation set after
training it for 55 epochs.

Test accuracy: 96.52024513816833 X%

Fig 18 : Validation accuracy of DenseNet121

5.2.2 Inception V3 - The highest accuracy of 94.71% was achieved by training Inception V3
model for 361 epochs

Fig 19 : Validation accuracy of InceptionV3

Using an ensemble of the three CNN models ,we have achieved an overall accuracy of 96.38%
on the validation section dataset as shown below.

Ensemble Model Accuracy:

Fig 20 : Accuracy after Ensemble Learning

ictions:
Probability: ©.8462
capsicum, Probability
InceptionV3 Prediction: paprika, Probability: @

Fig 21 : Superior prediction accuracy for ensemble model

The above image shows the three models working in the ensemble. Here we notice the individual
probabilities of each model along with their predictions. Even though VGG16 and DenseNet121
were making a wrong prediction, InceptionV3 successfully made a correct prediction.

5.3 Model Comparison and Selection

Although the Vision Transformer model is providing a higher accuracy on the validation set after training
for only 30 epochs, it fails to beat the ensemble of the three CNN based models providing an overall
increase in accuracy by approximately 2%. We have also tried to compare the accuracy results on
individual images sourced from the internet as shown below.

Pred: bell pepper | Prob: 0.566 Ensemble Prediction: capsicum | Probability: 0.9993

Pred: apple | Prob: 0.320 Ensemble Prediction: carrot | Probability: 0.8152

Fig 22 : Comparison of prediction of ViT (on the left) and Ensemble (on right) on the same images

From the above image comparison we note that the ViT model fails to recognize intricate differences in
images like distinguishing between “bell pepper” and “capsicum” while the ensemble model excels at it.
Furthermore in the second case where the fruit or vegetable is only a small part of the entire image the
ensemble model recognizes it correctly with 81.5% probability whereas the ViT image completely
mis-predicts it.

5.3 Paddle OCR and MultiLingual text

We utilized OCR methods such as Keras and Paddle to effectively detect and recognize text from labeled
ingredients on bottles/cans within the dataset. Due to the annotations being in image format, we opted for
Paddle OCR, which conveniently provided the extracted text in a list format, facilitating further
processing. Overcoming the obstacle of the dataset being in German, we implemented translation methods
to ensure compatibility with our tools. Additionally, to resolve compatibility issues with Paddle OCR, we
successfully employed the HEIC2PNG library to convert HEIC images from iPhones to jpg/png formats.
Furthermore, to ensure the logical correctness of our recommendations, we extracted specific keywords
related to ingredients by comparing translated English text with dataset columns using Python's set
method. This approach efficiently identified common elements. Lastly, for streamlined mapping, we
converted all extracted text to lowercase. Through this meticulous process, we derived accurate insights to
address our research question, supported by relevant visualizations and outputs from top-performing ML
algorithms.

5.4 TE-IDF model and matrix results

User input ingredients
user_input = ["potato"”, "pie", "o0il","carrot","eggs","lemon"]

Fig 23 : Sample User input

Fig 22 : Recommended Recipes based on user input

Recommended Recipes Based on Your Ingredients:

title PRI
481 Stir-Fried Gumbo 481 ww . cookbooks . com/Recipe-Details. aspx?1d=94254%
2999 Sourdough Biscuits(Potato Starter) 2999 www.cookbooks.com/Recipe-Details. aspx?id=728527
997 Quick Swedish Meatballs 997 . cookbooks . com/Recipe-Details. aspx?id=858050
1885 Roasted Potatoes With Arugula 1885 www.cookbooks.com/Recipe-Details.aspx?id=756855
1084 Good Cabbage Slaw 1004 www.cookbooks.com/Recipe-Details.aspx?id=524266
10883 Sauerkraut 1803 www.cookbooks.com/Recipe-Details.aspx?id=1842678
1082 Animal Crackers 1082 www.cookbooks.com/Recipe-Details. aspx?id=736649
1081 Pepperoni Loaf 1681 www.cookbooks.com/Recipe-Details. aspx?id=534772
1888 Hidden Valley Ranch Oyster Crackers 1808 www.cookbooks.com/Recipe-Details.aspx?id=648947
999 Peach Salad 999 www . cookbooks. com/Recipe-Details.aspx?id=65771
998 Irish Stew(Microwave) 998 www.cookbooks.com/Recipe-Details.aspx?id=1817368
996 Victorian Baked French Toast 996 weiw . cookbooks . com/Recipe-Details.aspx?id=968196
1007 Antionett'S Soup 1007 www.cookbooks.com/Recipe-Details.aspx?id=399026
995 Heath Bar Pie 995 wiiw . cookbooks . com/Recipe-Details.aspx?id=976718
994 Friendship Tea 994 www.cookbooks.com/Recipe-Details.aspx?id=1025828
993 Devils Chicken(Pollo Alla Diavola) 993 it . cookbooks . com/Recipe-Details.aspx?id=688725
952 Blue Muffins G692 wwi . cookbooks . com/Recipe-Details.aspx?id=533822
991 Favorite Chocolate Cake G991 ww . cookbooks . com/Recipe-Details.aspx?id=684926
g5@ Chicken Cassercle 990 wui . cookbooks.com/Recipe-Details. aspx?1d=445577
983 Baked Corn G989 wwiw . cookbooks. com/Recipe-Details.aspx?id=526724

6. Conclusion

With highly accurate results achieved through a fine-tuned vision model and advanced OCR capabilities,
augmented by intelligent recipe recommendations driven by NLP techniques, this holistic solution
enhances the grocery experience by enabling integrating item identification with personalized culinary
guidance. It promises enhanced culinary exploration and convenience for consumers.

The primary challenge faced in creating and integrating the above models was a dearth of computational
resources. With a greater availability of computational capabilities, we can train a customized OCR model
for our specific needs. Additionally, we can think about training the Vision Transformer model further to
test for improvement in predictive accuracy. As a future scope, we can add more classes of fruits and
vegetables to give our application an universal appeal. Finally, we can shift our focus from single item
images (one at a time approach) to multiple ingredients being identified and classified from one image
through simultaneous exploration of object detection and object classification algorithms.

About the Authors

Anurima Saha (asaha8669@sdsu.edu) Anurima Saha is a graduate student pursuing her Master's in Big
Data Analytics at San Diego State University. For the PIXEL-TO-PLATE project, she worked on the fruits
and vegetables dataset, leveraging vision transformers for training the image classification model using
transfer learning.. With a strong background in machine learning and computer vision, Anurima brings her
expertise to develop innovative solutions combining cutting-edge technology with practical applications.

Sayandip Pal (spal6554@sdsu.edu) Sayandip Pal is a Master's student in the department of Electrical
and Computer Engineering at San Diego State University. His role in the project involved working on the
fruits and vegetables dataset alongside Anurima, utilizing an ensemble of the CNN models for image
recognition tasks. Sayandip's interests lie in leveraging data mining and deep learning techniques to solve
real-world problems.

Sai Tejasri (syerramsetti9523@sdsu.edu) Sai Tejasri is pursuing her Master's in Big Data Analytics at
San Diego State University. Along with Radhika, she worked on the grocery dataset, employing Paddle
and Keras OCR for text recognition from images. With a passion for cooking, dancing, socializing, and
sustainable practices, Sai Tejasri aims to create a user-friendly recipe recommendation system that
efficiently utilizes available ingredients.

Radhika Ravindra (rravindra0463@sdsu.edu) Radhika Ravindra is a graduate student in the Big Data
Analytics program at San Diego State University. She collaborated with Sai Tejasri on the project,
focusing on the grocery dataset and utilizing Paddle and Keras OCR for text extraction from images.
Radhika explores innovative ways to apply data science techniques, developing efficient data pipelines for
multimodal data.

Prit Chakalasiya (pchakalasiya9736@sdsu.edu) Prit Chakalasiya is pursuing his Master's in Big Data
Analytics at San Diego State University. With a strong background in software engineering and deep
learning, he was responsible for developing the recipe recommendation system for the project. Prit aims
to create user-friendly applications that simplify daily tasks through intelligent solutions.

Project source code -
https://github.com/saitejasril/Shared-ML-project
References

[1]Marin, J., Biswas, A., Ofli, F., Hynes, N., Salvador, A., Aytar, Y., Weber, 1., & Torralba, A. (2019).
Recipe 1M+: A dataset for learning cross-modal embeddings for cooking recipes and food images. IEEE
Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2937218

[2]Kul, S., & Sayar, A. (2022). A smart recipe recommendation system based on image processing and
deep learning. In S. Misra et al. (Eds.), Innovations in Smart Cities Applications Volume 5 (pp.
1023-1033). Springer. https://doi.org/10.1007/978-3-030-94191-8 83

[3]Rokon, M. S. J., Morol, M. K., Hasan, I. B., Saif, A. M., & Khan, R. H. (2022). Food recipe
recommendation based on ingredients detection using deep learning. arXiv.
https://arxiv.org/abs/2203.06721

[4]Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, 1., & Torralba, A. (2017). Learning
cross-modal embeddings for cooking recipes and food images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 3020-3028).

https://openaccess.thecvf.com/content _cvpr 2017/html/Salvador Learning Cross-Modal Embeddings C
VPR 2017 paper.html

[5]Reigues, L., Fidalgo, F., & Oliveira, . (2023). A food image to recipe retrieval system using deep
learning. Applied Sciences, 13(13), 7880. https://doi.org/10.3390/app13137880

[6] Seth K. , Fruits and Vegetables Dataset. Kaggle.
//www.kaggle.com/datasets/kritikseth/fruit-

[7] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby,
N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

https://doi.org/10.3390/app13137880
https://www.kaggle.com/datasets/kritikseth/fruit-and-vegetable-image-recognition

[8] RecipeNLG dataset source - https://recipenlg.cs.put.poznan.pl/

[9] Densely Connected Convolutional Networks, by Gao Huang, Zhuang Liu, Laurens van der Maaten and
Kilian Q. Weinberger

[10] Very Deep Convolutional Networks For Large-Scale Image Recognition, by Karen Simonyan &
Andrew Zisserman , Visual Geometry Group, Department of Engineering Science, University of Oxford

[11] Rethinking the Inception Architecture for Computer Vision, by Christian Szegedy, Vincent
Vanhoucke, Sergey loffe, Jonathon Shlens and Zbigniew Wojna

https://recipenlg.cs.put.poznan.pl/

